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Dimensional analysis is applied to the velocity profile U ( y )  of turbulent boundary 
layers subjected to adverse pressure gradients. It is assumed that the boundary layer 
is in moving or local equilibrium in the sense that the free-stream velocity U, and 
kinematic pressure gradient a: = p-ldP/dx vary only slowly with the co-ordinate x .  
This assumption implies a rather complicated general equation for the velocity 
gradient d U l d y  which may be considerably simplified for several specific regions of 
the flow. A general family of velocity profiles is derived from the simplified equations 
supplemented by some experimental information. This family agrees well with almost 
all existing data on velocity profiles in adverse-pressure-gradient turbulent boundary 
layers. It may be used for the derivation of a skin-friction law which predicts satis- 
factorily the values of the wall shear stress at  any non-negative value of the pressure 
gradient. The variation of the boundary-layer thickness with x is also predicted by 
dimensional considerations. 

1. Introduction 
Turbulent boundary layers with longitudinal pressure gradients are flows of great 

significance for many engineering problems. Therefore it is not at  all surprising that 
an enormous literature is devoted to the study of such layers (only a small part of it 
is cited in this paper). The basic reference on the subject is the two-volume Proceedings 
ofthe 1968 AFOSR-IFP Stanford Conference (Kline et at. 1969; Coles & Hirst i969).  
Volume 1 of these Proceedings is devoted to various methods of computation of 
turbulent boundary layers, while volume 2 contains a collection of experimental data 
that were recommended for verification of future theories on boundary layers with 
pressure gradients. This recommendation shows that none of the theories discussed at  
the Stanford Conference was considered to be fully satisfactory and hence to make 
further theoretical development redundant. In fact several monographs and many 
tens, if not hundreds, of theoretical papers on boundary layers with pressure gradients 
were published after the Stanford Conference; typical examples are the monographs 
by Fedyaevskii, Ginevskii & Kolesnikov (1973) and Cebeci & Smith (1974) or the 
papers by Allan & Sharma (1974), Reeves (1974), Lapin & Sharov ( i974) ,  Kreskovsky, 
Shemroth & McDonald (1975), Head (1976), Novozhilov (i976),  and Ng & Spalding 
(1976). Nevertheless, so far there is no theory on general turbulent boundary layers 
with pressure gradients which is generally accepted as sufficiently accurate. 
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All the theoretical approaches in the book edited by Kline et al. (1969) and in all 
the subsequent work are based on certain hypotheses, e.g. closing hypotheses applied 
to close the Reynolds equations for the mean velocity field or a system of dynamical 
equations for the mean velocity and some of the higher-order moments of flow 
variables. However, none of the closing hypotheses nor any of the other proposed 
hypotheses is rigorous, and the physical basis of all of them is of limited soundness. 
Therefore it seems reasonable to try another way and to study the laws of turbulent 
boundary layers implied by general dimensional and similarity arguments alone 
without any use of dynamic equations and specific hypotheses. Of course, it should 
not be expected that these arguments alone will yield a complete solution of the 
problem. However, it is known that combination of dimensional arguments with 
some additional physical arguments and a few relations extracted from experimental 
information often permits one to find satisfactory solutions for various applications 
[cf., for example, the Monin-Oboukhov similarity theory of surface-layer atmospheric 
turbulence expounded in Monin & Yaglom (1971, chap. 4) or the derivation of heat 
and mass transfer laws for turbulent wall flows proposed by Kader & Yaglom (1972, 
1977a) and Yaglom & Kader (1974)l. It will be shown below that a similar approach 
may also be rather successfully applied to a wide variety of turbulent boundary 
layers in adverse pressure gradients. 

Let us now describe the class of turbulent boundary layers studied in the present 
paper. We shall consider only two-dimensional steady turbulent flows in the x direction 
along a flat impermeable wall coinciding with the plane y = 0. Unless stated other- 
wise, the wall will be assumed to be smooth and the pressure gradient to be positive. 
Moreover one more requirement will be introduced which is basic for the use of 
similarity and dimensional arguments. Namely, we shall assume that the boundary 
layer is in moving equilibrium in the following sense: the free-stream velocity Urn and 
kinematic pressure gradient a = p-ldP/dx vary only slowly with the co-ordinate x 
so that the boundary layer adjusts to these variations and its structure at any value 
of x depends essentially on the relevant local parameters (at the same 2) only and not 
on the upstream history of the flow. The assumption of a moving equilibrium may 
seem to be rather restrictive since it excludes the appearance of the so-called historical 
region within the flow and such a region is mentioned in some important studies (see, 
for example, Perry, Bell & Joubert 1966). However, in fact the class of boundary 
layers that can be considered to be in moving equilibrium is very wide and includes 
many important types of flows. It is easily seen, for example, that all the ‘equili- 
brium boundary layers’ of Clauser (1956) are in moving equilibrium, as well as the 
related near-equilibrium (pseudo-equilibrium) turbulent boundary layers of Head 
(1976). A moving-equilibrium condition will be also satisfied by all the gradually 
developing ‘ self-preserving ’ turbulent boundary layers of Townsend (1 965, 1976, 
chap. 7).  Let us also note that models of turbulent boundary layers evidently satisfy 
the moving-equilibrium condition if they may be represented by velocity-profile 
families which include only the local values of flow parameters (at a given value of z) 
and no upstream values (e.g. the wall-and-wake profiles of Coles; see Coles & Hirst 
1969, pp. 1-45; Monin & Yaglom 1971, $5.6; or Allan & Sharma 1974). The same 
condition is satisfied for many semi-empirical theories of turbulent boundary layers 
which are based on model dynamical equations which include no upstream values 
of flow parameters (see, for example, Kline et al. 1969; Fedyaevskii et al. 1973). The 
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investigation of the general conditions guaranteeing the moving-equilibrium character 
of the boundary layer is beyond the scope of this paper, although some related 
remarks will be given a t  the end of the next section. At present we just note that 
the subsequent, results will also show the possibility of satisfactory description of a 
wide collection of adverse-pressure-gradient boundary-layer data by the equations 
which do not violate the moving-equilibrium condition. Also some indications of the 
comparatively small deviations of the boundary layers considered from moving 
equilibrium will be given below. 

A preliminary report on this study was published as a short note by Kader & Yaglom 
(19773).  The main results of this note are included in a refined and partially modified 
form in the present paper. 

2. Similarity laws for turbulent boundary layers in moving equilibrium 
Let us consider the vertical velocity profile U = U ( y )  a t  a given cross-section 

x = constant of a turbulent boundary layer in moving equilibrium. This profile may 
depend on the physical properties of the fluid and the local values (at the given x) 
of external physical parameters affecting the flow, We shall consider only kinematic 
parameters tha,t are independent of the unit of mass. Then the kinematic molecular 
viscosity v will be the only necessary physical property of the fluid and the set of 
necessary external parameters will include the free-stream velocity U,, the boundary- 
layer thickness S (determined by the condition U(6)  = 0*99U,) and the kinematic 
pressure gradient a = p-ldP/dx. t  It is often convenient to use the friction velocity 
u* = (~,/p)h, where 7, is the wall shear stress, instead of the free-stream velocity 
Urn; this replacement will be widely used below. It is without any importance since the 
analysis must also give us a skin-friction law which permits us to determine the ratio 
u,/U, (or equivalently the skin-friction coefficient cf = ~ ( U * / U , ) ~ )  as a function of 
v, U,, 6 and a. 

Only the case of positive values of a will be analysed in detail in this paper; however 
at first we assume that a may have any sign (i.e. both adverse and favourable pressure 
gradients will be considered). Three independent length scales can be formulated from 
the four quantities v, u*, 6 and a. They are the viscous length scale S, = v/u*, the 
pressure-gradient length scale S, = u;//iaI and the external length scale 6. We shall 
consider only the case of a fully developed turbulent flow where the Reynolds number 

Re = U,S/v 
is very high and therefore Re, = u* S / v  = Re (&,)h is much greater than one, i.e. 
6 B S,. As a rule (though not always) we shall also suppose that 1011 is large enough to 
provide the inequality u;//IaI = 8, < 6 but small enough to provide the inequality 
S, % S, = v/u*. In  this case we shall have three very different length scales 

8, < 8, < 6, 
t It is also possible to assume that the derivatives a'(%) = da/dz, a"(x), ... of the function 

a(z) influence, to a certain extent, the velocity profile V(y) (see, for example, Perry 1966, whose 
conclusions were disputed by McDonald 1969). However, the assumption of a moving equilibrium 
presupposes implicitly that a(z) varies only slowly with z. Therefore it seems reasonable a t  first 
to neglect the influence of the derivatives of a(.) with respect to z. It will be shown below that 
such an approximate analysis leads to quite satisfactory results. That is why a more general 
wumption will not be considered in the present paper. 

11-2 
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which implies that the whole flow field can be divided into several regions described 
by different similarity laws. 

In fact, the distribution of the velocity gradient dU/dy in the flow considered can be 
described by a function of three dimensionless arguments according to the well- 
known n-theorem of dimensional analysis (see Bridgman 1932, chap. 4). The corres- 
ponding description can be presented in several different forms; in particular, it can 
be written as any of the following three equivalent equations: 

Here q51(y + , r ,  Re,), &(c, s, Re,) and $JT, s, Re,) are three universal functions which 
can be easily expressed in terms of one another. (These functions may clearly have 
different forms for a 2 0.) 

If y < 6, = ui//IaI (and hence a fortiori y < a), then the length scales 6, and 6 will 
not affect the flow significantly. Therefore it is convenient to use here (1 a ) ,  where the 
arguments r = 6,/6, and Re, = a/&, are replaced by infinity. It is natural to suppose 
(although this supposition cannot be proved rigorously) that there exists a bounded 
limit 

This implies the existence of the usual Prandtl wall law for y < 8,: 

$l(Y + 1 = M Y  + ,a, 00) = lim M Y  + , r ,  Re*). 
r+w R a - m  

We see that the wall law must have the usual form in flows with pressure grad- 
ients if 6, B &,, y < 6, and y < 6. However, if r = 6,/6,, is not great enough (but 
Re, = S/S, % 1))  then 

Pa)  
-=-$,ye? dU u* &), 
dY Y v ) lalv 

where $,(y  + , r )  = $ l ( y  + , r,  00) is a universal function of two variables. 
In  the region y % 8, = v /u ,  the eddy viscosity is of order u,  y and is much greater 

than the molecular viscosity v.  Hence the influence of the molecular viscosity on the 
vertical momentum transfer can be neglected in this region. This remark implies that, 
when 6 $6, (i.e. Re, B I) ,  the so-called Reynolds number similarity must be valid at  
y $ 6,. The Reynolds number similarity principle asserts that all the flow parameters 
are independent of the molecular viscosity and hence also the Reynolds numbers Re 
and Re, (see Townsend 1976, $5.7).  This principle implies that the function $,(yu*/v) 
on the right-hand side of (2) may be replaced by a constant $,(a) = A when y 9 v/u,. 
This replacement leads us to the well-known equations of the logarithmic layer: 

d U / d y  = Au,/y,  U ( y )  = u,[A In (yu*/v)  + B ] .  (3) 

Let us also note that in case of a homogeneous rough wall with protrusions of mean 
height h the function $,(yu, /v)  in ( 2 )  must be replaced by a more complicated function 
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$l(yu,/v, hu,/v, ul, u2, ...), where ul, u2, ... are dimensionless parameters which 
characterize the shapes and spatial distribution of the roughness elements. The 
functions $l(yu*/v)  and $l(yu*/v ,  hu,/v, ul, cr2, ...) approach the same limit A as 
yu*/v+co, but the velocity profile within the logarithmic layer above a rough wall 
(i.e. at y % v/u* and y % h)  is given by the modified equation 

U ( y )  = u*[A In ( yu* /v )  + B - B'], B' = B'(hu*/v, ul, u2, . . .) (3a )  

(cf. Monin & Yaglom 1971, $ 5.4; Hinze 1975, § 7.5; Townsend 1976, $5.5).  It follows 
from this that the rough-wall velocity profile within the logarithmic layer and above 
it may be obtained from the corresponding smooth-wall velocity profile a t  the same 
values of u*, v, a and 8 by the subtraction of a constant velocity B' from all the values 
U ( y ) .  A similar situation occurs in the case of turbulent flow along a smooth wall of 
dilute solutions of drag-reducing polymers. The only difference is that here all the 
velocity values U ( y )  within the logarithmic layer increase by a constant amount in 
comparison with the corresponding values in ordinary fluid flow. Hence in such a case 
the velocity profile is also given by ( 3 a )  but the quantity B' is negative. (B' depends 
here on u, u* and the polymer concentration and type; cf. Huang 1974, where many 
additional references can be found.) Therefore, if the influence of the pressure gradient 
does not eliminate the logarithmic layer, then the cases of rough-wall flow and flow 
of a dilute polymer solution do not need special consideration. So neither of these 
cases will be mentioned below. 

The conditions 8, < y < 8 must determine a special 'gradient layer ' characterized 
by the property that here the molecular viscosity and the length scales 8, and 8 do not 
affect the flow significantly. It is convenient to  use (1 b )  within this layer and to replace 
large arguments s = Glal/u; = 6/6, and R e ,  = 8/8,  by infinity on the right-hand side 
of ( I  b) .  If we assume that a finite limit $2(c, co, co) = #2(6) exists, then we obtain the 
following equation : 

However, if in a fully developed turbulent flow (i.e. at R e ,  % 1 )  the value of 

is not large enough, then the argument d l a [  /u$ of $2 must be preserved in ( 1  b) .  Hence 
in this case the eauation 

will be valid at y % 6,. 
Later we shall consider only the case of decelerating flows with u > 0. In  such a 

case the flow region determined by the condition y 9 8, = .;/a deserves a special 
study. The fluid-dynamic equations imply that the relation &/dy = d P / d x  = p a ,  
where r = pudU/dy-pu'v'is the total stress, is valid at the wall (i.e. when y = 0) in 
a two-dimensional steady flow along a smooth wall (see, for example, Monin & Yaglom 
1971, $ 5.2; or Townsend 1976, 8 5.2). Therefore 

7 ( y )  = 7,+puy+ ... ( 5 )  

in the vicinity of the wall if a > 0. The form given by ( 5 )  is not very accurate because 
mean-flow inertia has been neglected (McDonald 1969; Townsend 1976, $5.15); 



310 B. A .  Kader a d  A .  M .  Yaglom 

nevertheless this equation can be used for the estimation of the order of the magnitude 
of the shear stress variation for a two-dimensional boundary layer in an adverse 
pressure gradient. From (5) it can be seen that the increase in the shear stress from 
y = 0 to a given y exceeds r ,  = pui significantly, if a > 0 and y % 6, = .:/a. Hence 
the value of a shear stress for y 6, depends on the wall stress r ,  only slightly, and is 
determined mainly by other factors. It seems natural to suppose that when a > 0 and 
y 9 IS, a wall stress similarity principle is valid according to which the value of 
u* = ( r , / p ) f  can be excluded here from the list of physical quantities which affect the 
flow significantly. The application of this principle to (4) leads to the conclusion that 
the function $ 2 ( y a / ~ $ )  = $2(y/8,)  must be close to the constant $2(m) = 4.X when 
a > 0 and y > 6,. Hence the so-called ‘half-power law’ must be valid for the velocity 
profile in the region 6, < y < 6; according to this law 

d U / d y  = & . X ( a / y ) f ,  U ( y )  = .X (ay ) f  + .XI. ( 6 )  

Another derivation of the ‘ half-power law ’ will be given later in this section. 
If y is of the order of 6, then the velocity profile is most conveniently described by 

( l c ) .  When Re, % 1 and, in addition, a > 0 and y % S,, Reynolds number similarity 
and wall stress similarity will be valid simultaneously. This implies that the last two 
arguments of the function $3(r, s, Re,) can be replaced by the infinity and hence 

If, however, a < 0 or the ratio 6/6, is not great enough, then the wall stress similarity 
principle will be inapplicable. Therefore the argument s = 6/8, of the function $3 

must be retained here and (7) take the form 

Let us now assume that the boundary layer includes both the ‘gradient layer’ and 
the ‘velocity defect layer’ and also that the maximum value of y for which the gradient 
law (4) is valid is greater than the minimum value of y for which the velocity defect 
law (7 )  is valid. Then an overlap layer exists where the laws (4) and (7)  are valid 
simultaneously. In  such a layer the following equalities will be satisfied: 

Hence here 

where .X = constant. Substitution of equation (8) for $2 into (4) leads again to the 
‘ half-power law ’; this is the second derivation of this law mentioned above. Moreover 
substitution of equation (8) for $3 in the first of equations (7) yields 

where I is an integration constant. The order of the magnitude of 1 may be roughly 
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estimated by the assumption that (9) is valid till the outer edge of the boundary layer. 
In  fact t$e left-hand side of (9) must vanish at y = 6 and hence the stated assumption 
implies that I NN X However, this assumption is not strictly valid and therefore the 
implied estimate of I cannot be expected to be precise. 

Only boundary layers along a flat plate have been considered in the above dis- 
cussion. It is clear, however that all the equations considered can also be applied to the 
flows in channels with parallel walls, in straight circular tubes (where the y axis is 
perpendicular to the tube wall) and in plane or axially symmetric diffusers or con- 
tractions if the boundary-layer thickness 6 is smaller than a typical vertical flow 
length scale 9 (the half-width for plane flows and the radius for axially symmetric 
flows). The situation is slightly more complicated when boundary layers along opposite 
walls merge with each other and fill the whole flow region (for example, in steady 
developed turbulent flows in a channel, tube, diffuser or contraction). Here the 
vertical flow length scale 9 plays the role of the length scale 8. It is natural to assume 
that all the above-mentioned equations which do not contain 6 (i.e. are independent 
of the flow conditions a t  y values of the order of 6) will be also applicable to such flows, 
while the equations containing S will be applicable only when 6 is replaced by 9, in 
which case the functions in these equations may have different forms for different 
types of flow. However, we shall not consider the cases of merging opposite boundary 
layers in the present paper. (Let us also note that a is always negative in channel, 
tube and contraction flows.) 

The considerations mentioned above may be used for the derivation of some con- 
ditions which are apparently necessary for the flow to be in moving equilibrium. In 
fact, it has already been explained that, only two dimensional parameters a and 6 
affect significantly the flow in the outer region of a boundary layer if Re, B 1,  a > 0 
end 6 $ 8,. Therefore the typical time scale ('relaxation time scale') in this region is 
proportional to To = (6/ct)t. Furthermore, the typical time scale of the longitudinal 
variations in the free-stream velocity U, is equal to JdU,/dx(-' = UJa. These 
longitudinal variations are the main reason for the change in the boundary-layer 
conditions along the x axis; hence it is natural to suppose that a boundary layer with 
a > 0 and 6 9 8, can be in moving equilibrium only when (6ja)t 4 U,/a, i.e. 

I t  will be seen from the data analysed in the present paper that in fact the value of 
U,/(aS)4 need not be very great to guarantee a moving equilibrium. However a moving 
equilibrium is only approximately valid when the value of the above-mentioned ratio 
is considerably smaller than ten (see figure 11 and the corresponding discussion in the 
bxt). We also mention that the above condition is only necessary and not sufficient 
for moving equilibrium, It is natural to expect, for example, that longitudinal varia- 
tions of the kinematic pressure gradient a(x) do not influence the flow if 

Moreover, moving equilibrium will not occur for separation and near-separation flows; 
therefore such flows will not usually be considered in the present paper. 

Many of the above-mentioned similarity laws are well known and can be found in 
some form in the enormous literature on turbulent wall flows. A number of the related 
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references will be given in the next section of the paper. However, we do not know 
of any sources where all these similarity laws are considered simultaneously. Moreover, 
the similarity laws are usually supplemented by some quite different assumptions of 
varying degrees of soundness while we tend to avoid all such assumptions in the present 
paper. Below we restrict ourselves deliberately to determination of all the functions 
and constants of the similarity theory by a pure treatment of the existing experimental 
data. This does not mean, of course, that we consider dynamic equations to be useless 
for the study of turbulent boundary layers. We are sure that the dynamic theory and 
intelligently selected closure hypotheses can be quite helpful for the refined deter- 
mination of the similarity functions and constants, the control of the physical realiz- 
ability of the results and the detailed study of the limits of the applicability of the 
assumption of moving equilibrium. However, all the deductions from the dynamic 
theory must first of ad1 be compared with the existing data, and use of the general 
similarity equations may considerably facilitate such a comparison. Hence it is 
reasonable to study first the deductions from the similarity theory alone, which are, 
moreover, interesting in their own right. 

3. Experimental verification of similarity laws and similarity computation 
of velocity profiles 

Ludwieg & Tillmann (1949) performed the best-known experiments which con- 
firmed the applicability of the Prandtl wall law (2)  and of the logarithmic law (3) to the 
wall region of a turbulent boundary layer in a moderate longitudinal pressure gradient. 
Similar experiments were repeated later by many other investigators and the validity 
of (2)) (3) and (3a)  for wall flows in a pressure gradient has now been confirmed very 
reliably (cf., for example, Perry et al. 1966; Coles & Hirst 1969; or Townsend 1976). 
The most widely used values of the constants in (3) are A = 2.5 (i.e. k = A-l = 0.4) 
and B = 5; however, the scatter in the proposed values of these constants is still rather 
high. In  fact, the widely used values of k and A vary, a t  least, from k = 0.35 and 
A = 2-9 (e.g. Businger et al. 1971) to k = 0.435 and A = 2-3 (e.g. Ng & Spalding 1976), 
but values far outside this range can also be found in the literature and the scatter 
in the values of B is even greater than that in the values of A .  On the basis of the 
scatter in the values of A ,  Tennekes (1968) formulated some arguments in favour of 
the validity of the equation A = A,- Al(S,/Sp)s, where A,, w 3 and A, w 4, for 
turbulent tube flow (see also Tennekes & Lumley 1972, $5.4). Tennekes’ equation 
for A transforms (3)  into a special case of (2a) .  This equation for A is, however, not 
universally recognized and moreover was recommended for a pressure-gradient tube 
flow only, i.e. for a special type of turbulent wall flow with a < 0.t Therefore we shall 
use below only the usual equation (3) with constant coefficients A and B.  Moreover 
we shall follow the recommendations of Coles & Hirst (1969) and assume that A = 2-44 
(i.e. k = 0.41) and B := 5. 

Many forms of the wall-law function $l(y+) and the related velocity-profile function 

t It is easy to verify that for tube flow tc = - 2u$/S, where S is the tube radius, and hence 
6, = is. 
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can be found in the literature (see, for example, Monin & Yaglom 1971, $5.3; or 
Hinze 1975, $7.5).  These forms seem to be quite different, but in fact they are rather 
close to each other. All of the forms are based on some interpolation function which 
makes a smooth junction with the logarithmic equation for U(y) at y+ = yu*/v > 1 
and with the linear equation U ( y )  = ui y / v  at y+ < 1.  Moreover all the suggested 
forms of r$,(y+) and Ql(y+) agree with the existing experimental data to approximately 
the same degree of accuracy. I n  the present paper we shall use, for definiteness, the 
equation 

(10) I 14.5tanh(y+/14*5) for 0 < y+ < 27.5, 
2-441ny++5 for y+ > 27.5. 

-- W Y  f 
u* 

Equation (10) is one of the simplest recommendations for Ql(y+); it is mentioned, 
for example, by Hinze (1975) and it is rather widely used (cf. McDonald 1969; or 
Schofield & Perry 1972). 

Townsend (1961, 1976), Mellor (1966), McDonald (1969) and some other authors 
proposed refined equations for the velocity profile near the wall. In  these equations, 
the influence of cc. = p-ldP/dx is taken into account with the help of the replacement 
of the usual wall law by a special form of (2a).  The above-mentioned authors used 
both experimental data and semi-empirical hypotheses to derive the proposed profile 
equations. The graphs of the recommended functions 

Q l ( Y + ,  .“,a4 = /;+ MY’, .”,l.d y’-l dY’ 

m. the argument y+ a t  various values of u$/av  are shown in figure 5 of Mellor (1966) 
and in figure 2 of McDonald (1969). Both authors emphasize that the influence of the 
pressure gradient a can destroy the logarithmic layer of the flow when the value of 
S,/S, = ui/lalv is not high enough. The same influence can also lead to a velocity 
profile for y+ < 27.5 which is quite different from that of an idealized wall flow with 
dP/dx  = 0 and 7(y) = constant. The last fact has some important physical implications. 
It is well known now that the turbulent energy production in turbulent wall flows has 
its maximum value within the so-called ‘buffer region ’ between the logarithmic layer 
and the viscous sublayer, where the velocity profile is linear (see, for example, Hinze 
1975, $7.13).  If the pressure gradient is negative and high in absolute value (i.e. 
u:/IaIv is small), the region of influence of 01 reaches the ‘buffer region’ of the flow; 
this influence leads to a considerable ‘overshoot ’ in the velocity profile compared with 
(10) and to a decrease in turbulent production. As a result relaminarization (i.e 
reverse transition) may occur. Relaminarization is often observed in turbulent bound- 
ary layers subjected to strong favourable pressure gradients (see, for example, Patel 
& Head 1968; Badri Narayanan & Ramjee 1969; Bradshaw 1969; or Kreskovsky et 
al. 1975). The similarity arguments of the present paper imply that relaminarization 
must take place at moderate values of S,/S, = u3,/1cxIv, beginning at some ‘critical’ 
value of this parameter. This statement may be made even more precise: since the 
upper edge of the ‘buffer region ’ is close to the plane y = 5Ov/u, = 506,, it is natural 
to expect that the ‘ critical ’ value of the ratio SJS, is of the order of a few dozen. This 
expectation agrees well with experimental data of Schraub & Kline (1965), Patel & 
Heed (1968) and Badri Narayanan & Ramjee (1969) which show that relamineriza- 
tion usually takes place a t  u i / /a1v  w 50 (see also Bradshaw 1969). 
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In the case of an adverse pressure gradient (i.e. a > 0), at moderate values of 
u:/av the influence of 01 also extends to the buffer region’ and viscous sublayer. This 
influence changes the turbulent structure in the vicinity of the wall and can lead to 
separation of the flow. In fact the data of Schraub & Kline (1965) show that if a > 0 
then the number of ‘bursts’ in the viscous sublayer of the flow increases considerably 
from ug/av x 50 onwards, i.e. from the same value of u&flaIv as characterizes re- 
laminarization when a < 0. The intensification of bursting leads a t  first to the appear- 
ance of local separations of the flow, i.e. to the beginning of the so-called intermittent 
or turbulent separation (see, for example, Sandborn & Kline 1961), and then (at the 
point where uy vanishes) to permanent, fully developed separation. The above argu- 
ments lead us to expect that the value ug/av = 50 will, apparently, give a rough 
estimate of the point a t  which intermittent separation (i.e. near-separation flow) 
begins. 

The use of a more complicated equation for aU/ay (or U(y)) depending on the 
dimensionless parameter ug/lalv instead of (10) may, apparently, allow one to obtain 
slightly better agreement with velocity-profile data in the vicinity of a wall. However, 
in this paper we are trying to describe the whole velocity profile with satisfactory 
accuracy and are not interested in obtaining the best possible fit to the data within 
particular narrow layers. Therefore we shall base our analysis on the known fact of 
the satisfactory applicability of the usual wall law ( 2 )  even when ui//lalv is relatively 
small (Coles & Hirst 1969) and shall not consider forms of the wall law which are more 
complicated than (10). Nevertheless the value of ug/av will influence significantly the 
velocity distribution in the vicinity of a wall according to our theory too. However, 
this influence will not be related to the change in the form of the wall law, but will 
change the range of y values in the region of applicability of (10). 

The gradient layer of a flow with a velocity gradient of the form (4) lies just above 
the region of validity of the universal law ( 2 ) .  Equation (4) is similar to the well-known 
equation of Monin and Oboukhov for the velocity gradient in a thermally stratified 
turbulent wall flow; the only difference is that the pressure-gradient length scale 8, 
is used in (4) inst’ead of the Oboukhov stratification length scale L (see, for example, 
Monin & Yaglom 1971, chap. 4). The equation related to (4) was indicated in a note 
by Engelund (1973)’ which also contains the only attempt known to us to estimate 
roughly the form of q52(t!J (or, more precisely, the deviation of the indefinite integral 
of q52(<) c-* from the logarithmic function) from measurements in pressure-gradient 
wall flows. Engelund’s approach to the theory of pressure-gradient flows is similar to 
the approach of the present paper, but his results for the form of the velocity profile 
are not reliable enough and need further verification and refinement. However, we 
shall not dwell upon this problem here. The reason is that the fluid layer where the 
usual wall law ( 2 )  is inapplicable and at the same time the ‘half-power law’ is also 
invalid is usually very thin according to all the data analysed below. Therefore in 
most cases this layer can be neglected when one computes the velocity profile in a 
pressure-gradient boundary layer. 

Let us now consider the ‘half-power layer’ of the flow where the velocity profile 
may be described by the ’half-power law’ (6) with a Satisfactory accuracy. This layer 
plays a very important part in our analysis. The ‘half-power law’ (6) was apparently 
first suggested in 1956 in unpublished work by the Moscow scientists E. E. Solodkin 
and I. I. Mezhirov (see Ginevskii 1969, p. 275). The classical mixing-length theory of 
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FIGURE 1.  Dimensionless velocity profiles of Newman’s (1951) airfoil boundary layer at different 
values of the streamwise co-ordinate x. Values of x (in metres): 0, 0.61; a, 0.84; 0 ,  1.07; 0 ,  
1.22; 0 ,1*37;  0 ,1*45;  @, 1.50. The solid linescorrespond to therelationship U(y)/u* cc (ya/u$)t. 

Prandtl was applied in this work to a wall flow with a linear shear stress profile 7(y )  
and it was also assumed that the mixing length was proportional to the distance from 
the wall. In other words the method used by Prandtl to derive the logarithmic law (3) 
was applied by Solodkin & Mezhirov to derive the ‘half-power law ’. The first published 
papers containing the derivation of the ‘half-power law’ are those by Ginevskii & 
Solodkin (1958) and Stratford ( 1 9 5 9 ~ ) .  We mention that Stratford gave a purely 
dimensional derivation of the ‘half-power law ’ in addition to the mixing-length 
derivation, i.e. he supplemented the Prandtl mixing-length arguments by arguments 
similar to those used by Landau & Lifshitz (1963, chap. 4)  to obtain the logarithmic 
law (3).t  The paper by Stratford ( 1 9 5 9 ~ )  includes also a reference to his adjacent 
experimental paper (Stratford 1959b), where the ‘half-power law’ is verified for an 
artificial pressure-gradient boundary layer with negligible wall stress. 

Stratford’s work ( 1 9 5 9 ~ ’  b )  attracted much attention and stimulated the appear- 
ance of many subsequent theoretical and experimental investigations of the ‘ half-power 
law’ (see, for example, Townsend 1960, 1961; Perry et aE. 1966; McDonald 1969). 
In particular, Perry et al. gave a very clear presentation of the dimensional derivation 
of the ‘half-power law’ and also made special measurements which imply (together 
with some previous measurements by different authors) that the constant LX? in (6) 
is about 4.16. The same value of the constant .X is given in the recent book by Town- 
send (1976, § 5.15). However, Schofield & Perry (1972) and Perry & Schofield (1973) 
made a very careful treatment of all the velocity profiles of boundary layers in adverse 
pressure gradients from the book by Coles & Hirst (1969) and found that, in fact, the 
situation is more complicated than was supposed by Perry et al. (1966). To illustrate 
the real situation we plot in figure 1 logarithmic graphs of the quite typical data of 
Newman (1951 ) for velocity profiles in an airfoil boundary layer. Figure 1 shows that 
a considerable region ofproportionality of U ( y )  to (ay)3 can be found in all the boundary- 
layer cross-sections. However the corresponding factor of proportionality is not 

t The first Russian edition of Landau & Lifshitz’ book containing the dimensional derivation 
of the logarithmic. law was published in 1944. We also remark that the derivation of the ‘ half- 
power law’ with the aid o f ‘  overlap layer arguments’ given in § 1 of the present paper is com- 
pletely analogous to Izakson’s (1937) derivation of the logarithmic law. 
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constant but takes different values in different cross-sections. Schofield & Perry (1972) 
treated the data from 1 1 experiments containing 145 velocity-profile measurements 
for boundary layers in adverse pressure gradients and found that the situation shown 
in figure 1 is a very usual one. In fact all the profiles treated contain a region of validity 
of the ‘half-power law’, but the values of the dimensionless coefficient .X in (6) are 
very far from being constant and show a large spread. Therefore it seems that the 
experimental data clearly contradict the similarity law (6) since the coefficient X 
in this law must be strictly constant according to the deductions from the dimensional 
analysis. That is why Schofield & Perry (1972) and Perry & Schofield (1973) deduced 
that the assumption that the local values u* (or Urn), S and a are the only physical 
quantities which determine the velocity profile in any fixed cross-section of a boundary 
layer could not be correct. Instead of this assumption they introduced some alternative 
length and velocity scales that were determined in a special manner from the velocity 
and shear stress profiles U(y) and ~ ( y )  at the given value of x. 

Let us try to apply another argument to explain Schofield & Perry’s finding. In 
fact, their results do not necessarily imply that the list of physical parameters which 
determine the flow conditions a t  the fixed value of x must be extended compared with 
the list given in 5 2 of tQe present paper. The variations in X found by Schofield & 
Perry may indicate that the values of the dimensionless parameter S/S, = aS/u$ 
were not large enough in the experiments analysed to guarantee the applicability of 
the limiting law (6), which is derived for the situation when aS/u$-+ 00. It is easy to 
verify that the values of a8/u$ for most of the data from the book by Coles & Hirst 
(1969) do not exceed several tens, i.e. are not very high. (Let us recall for comparison 
that the lower edge of the logarithmic layer is often supposed to be located a t  a 
distance y which exceeds the viscous length scale 8, = v/u* by many tens of times.) 
The formulated explanation of the finding of Schofield & Perry means that most of 
the data analysed are related to turbulent flows in which the corresponding velocity 
gradient aU/ay is described within the gradient layer by the general equation (4a) and 
not by the special case (4) of (4a).  Of course, it is possible that within the region of 
applicability of (4a)  a sublayer may be found in which the velocity gradient is de- 
scribed with satisfactory accuracy by the relation 8Ul8yOc y-4. It is necessary for this 
that the function #,(yct/u$, aS/u$) should vary only slowly with its first argument 
ya/u$ in the indicated sublayer. In other words it is necessary that the function should 
not change appreciably with y, i.e. should be approximated by a function of the 
single variable aSlu2, with satisfactory accuracy. It is natural to assume that such 
a situation arises within the ‘half-power layers’ of most of the flows considered by 
Schofield & Perry. If this is really so, then the velocity profile within the indicated 
‘ half-power layers ’ must be described by an equation of the form 

where X(aS/u$) is a function of aS/u$. It is clear that the law (1 1) is zt generalization 
of the usual ‘half-power law’ (6). Hence we shall caIl the law (11) and the Iayer in 
which it is valid the ‘generalized half-power law ’ and ‘generalized half-power layer ’, 
respectively. 

On the basis of the above assumption we treat anew all the data analysed by 
Schofield & Perry. Initially we suppose that X, = 0 since this simplifies considerably 
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FIGURE 2. Dependence of the coefficient 3? in the ‘ half-power law ’ on aS/u$ according to experi- 
mental data. Number of experiment in Coles & Hirst (1969): 0, 1100; 0 ,  1200; 0, 2200; +, 
2300; A, 2400; A,  2600; v, 2900; A ,  3300; a, 3500; 4,  3700; 4 , 3 8 0 0 ;  4 , 4 0 0 0 ;  b ,4500; B , 
4800; U, 5000; w, 5100; a, 5200; a, 5300. 

the isolation of the ‘generalized half-power layer’ in the logarithmic graph of U ( y ) .  
Moreover, we supplement our treatment by plotting the dependence of 3” on the 
parameter aS /u ;  (see figure 2) .  The results obtained are very convincing: all the experi- 
mental points lie very close to a single smooth curve which can be described by the 
simple power law 

X(aS/ujjL) = 24-5(a&/u:)-% (12) 

Therefore it is natural to suppose that the strong variations in the values of X in 
Schofield & Perry (1972) and in Perry & Schofield ( 1  973) are also due to the dependence 
of J f  on a6/u:, which is disregarded by these authors. 

The equation U(y) = X(ay) t ,  where 3? = X(a6/ujjL) is given by (12), permits one 
to describe rather precisely a considerable portion of any of the velocity profiles U ( y )  
analysed by Schofield & Perry. If we combine this equation with other similarity 
equations from the present paper, we may obtain a satisfactory description of all the 
profiles over the whole range of y from y = 0 to y = 6. The power law ( 1 2 )  for 3? 
agrees well with the well-known frequent appearance of power-law relations in 
various branches of continuum mechanics (see, for example, Barenblatt & Zel’dovich 
1972; Barenblatt 1976, where the special term ‘self-similarity of the second type’ was 
introduced for such relations). However, such ‘ self-similarity of the second type ’ 
usually occurs as an intermediate asymptotic regime which is transformed into the 
usual ‘ self-similar equilibrium regime ’ as a dimensionless parameter of the problem 
tends to infinity. The main difference between the usual self-similarity (‘ self-similarity 
of the first type’) and ‘self-similarity of the second type’ is that the dimensionless 
exponents in the corresponding power-law relations can be determined from dimen- 
sional analysis only in case of ‘self-similarity of the first type’. Therefore it seems 
natural to expect that the function X(a&/ug) will tend to a constant value as 
a&/ujjL + co. The lack of such a tendency in figure 2 may be related, for example, to 
the introduction of the supplementary assumption that XI = 0. (This supplementary 
assumption simplifies the treatment of the data but has no physical basis.) Therefore 
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we have treated again all the velocity-profile data for adverse-pressure-gradient 
boundary layers from Coles & Hirst (1969) (and also the later data of Samuel & 
Joubert 1974) without using any assumption about XI. We base our new treatment 
on the values of aU/ay and use a computer for the determination of the regions of 
applicability of the first equation (1 l ) ,  which does not include XI. Compared with the 
treatment by Schofield & Perry and with our old treatment, the new treatment leads 
to a considerable extension of the set of profiles U(y) with a definite ‘generalized 
half-power layer’ and of the ranges of y values within these layers. In particular, 
the ‘generalized half-power law’ now proves to be applicable to many profiles U(y) 
with aS/u: 5 1, although the usual derivation of the law is based on the assumption 
that aS/u: a 1.  (This is clearly due to the fact that it  is very often possible to find a 
narrow range of y where the equation U ( y )  = k, yt + k, is valid with satisfactory 
accuracy.) The collection of new values of X is plotted in figure 3 as a function of 
aS/u$. We see that the new values are also described satisfactorily by a single-valued 
function of aS/u2,. (The increase in the scatter in figure 3, compared with figure 2, may 
be explained, for example, by the influence of errors due to the differentiation of 
U(y).) However the new function X(aS/u:) may be described by a power law (of the 
form X(aS/u2,) = 14(aS/u2,)--#) only provided that aSlu2, is not too large. As aSlu2, 
increases the rate of decrease of X(aS/u$) decreases and the function 3? tends to a 
constant value as aS/u2,+oo. I n  fact, the values of 3? are practically constant in the 
range aS/u$ > 50 and the limiting value of 3? is close to 45, i.e. it differs slightly 
from the value of X recommended by Perry et al. (1966) and by Townsend (1976, 
$6.15). Hence the results of t’he new treatment show that the ‘generalized half-power 
law ’ corresponds, apparently, to ‘ self-similarity of the second type ’ at small values of 
aS/ui (say aS/u: < 5) and to the usual ‘self-similarity of the first tsfpe’ at  large values 
of aS/u: (aS/u$ > 50). 

The function X(aS/u2,) may be described over the whole range of aS/ug by an 
interpolation equation which joins smoothly with the power law X = Z‘ x (aS/u:)-* 
as aS/u2,-+O and tends to a constant X”  as aS/u2,4oO. The simplest interpolation 
equation has the form of a linear relation .%? = X1(u2,/aS)* + X”,  which is similar to 
the equation for the coefficient A of the logarithmic law recommended by Tennekes 
(1968). A n  equation for X of such a form was used in the preliminary version of the 
present paper (Kader & Yaglom 1977b). However, a more complicated interpolation 
equation of the form 

X = ([X’ x (u2,/aS)t]m + ( X ” ) m ) l ’ m  

may be also used and an increase in the exponent m leads to more distinct separation 
of the asymptotic behaviour of X(aSlu2,) at large and small values of aSlu2,. Figure 
3 shows that fully satisfactory agreement with the data can be achieved if we select 

(13) 
m = 2 and take 

This equation for X will be used below. 
The constant X, represents the velocity of slip at the wall, if the half-power equation 

is extrapolated to the wall; we shalI call it  the ‘slip velocity’. The experimental value 
of the slip velocity may be determined easily if the value of X is known. Instead of 
extrapolating the graph of t!he ‘generalized half-power law’ to the wall it  is more 
convenient to use a computer to determine XI. It is necessary for this only to compute 

x = (200u2,/aS + 20)k 



Noving-equilibrium turbulent boundary layers 

I I I 1  1 I I l l  I 1 I l l  I I I I  

319 

1 1 1 1  I I I l l  I I I l l  I I I L  
10-1 I oo 10‘ I o2 

asluf 

03 

FIGURE 3. Refined data on the dependence of .f on a8 fu:. The symbols appearing also in figure 2 
have the same meaning here. Number of experiment in Coles & Hirst (1969): 0 , 2 1 0 0 ;  A ,  2500; 
D, 3200; 4, 3600; 4, 4100; D , 4400.8, Samuel & Joubert’s data (1974). All the symbols used 
in figures 1 and 2 have the same meaning in the subsequent figures. 

the difference U(y) - X(ay)t  for all the y values within the generalized half-power 
layer and then to form the arithmetic mean of all the values of the difference related 
to a given profile U(y). The values of the dimensionless slip velocity .Xl/u, obtained 
are plotted in figure 4 vs. the variable I?, which appears when we try to obtain a crude 
theoretical estimate of Xl. This estimate is based on the simplified assumption of a 
smooth junction (without a jump in the values of aU/ay) between the ‘generalized 
half-power law ’ ( I  1 )  and the wall law (10). Let us suppose at  first that the junction 
occurs within the logarithmic layer, i.e. a t  y+ 2 27.5, where U(y)/u* = 2.44 In y+ + 5. 
We assume that 2.44 In y+ + 5 = X(ay/u$)* + .Xl/u, and 2.44/y = 0*5Z(a/yu$)* at  
the junction. Then it is easy to show that 

U: (4*88)2 6 4  /uv 
x _ -  -X, - 2.441nr, r = - - 

u* OIV . X 2  5(1+ loU:/OIs)’ 

However, the logarithmic layer does not exist at very high values of av/u$. At high 
enough values of av/ui (i.e. a t  small enough values of r) the junction will occur 
within the viscous sublayer, where U(y) = u: y/v. Therefore the equations 

u* y/v = X(czy/u$)* + X1/U*, U*/V = 0-5X(u/yU$)* 

must be valid a t  very small values of I?, and these equations imply that 

.Xl/U, = - (4*88)2/41’ % - 6/r, (144 

where I‘ has the same meaning as in (14). Hence the function Xl(I’)/u* must be 
described by the asymptotic equation (14) a t  large values of r and by (14a) a t  small 
values of I‘. Figure 4 shows that the existing experimental values of XJu, may be 
approximaked satisfactorily by the interpolation equation 

which agrees with both the asymptotic equations (14) and ( 1 4 ~ ) ;  one more term 
- 15/I’* is included in the right-hand side of (15) to achieve better agreement with the 
data. 
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FIGURE 4. The dependence of the coefficient .%, on the parameter 

I’ according to experimental data. 

It has already been indicated at the end of 4 1 that the ‘half-power layer’ coincides 
with the overlap layer where the gradient law (4) and the velocity defect law (7) are 
valid simultaneously. However we have considered in $ 1  only the form (6) of the 
‘half-power law’ where the coefficients are constant. Now we see that most of the 
data from the book by Coles & Hirst do not agree with the ‘half-power law’ (6) but 
do agree, over some range of y values, with the generalized half-power law (1 l ) ,  which 
is a special case of the generalized gradient law (4a). It is easy to see that the first of 
equations (11) is also a special case of the first of equations (7a) corresponding to a 
function q53 of the form q53(y/8, aSlu2,) = 0.5(y/S)kX(aS/u$) .  Therefore the region of 
applicability of the ‘generalized half-power law ’ (1  1)  coincides with the overlap layer 
where the generalized gradient law (4a )  and the generalized velocity defect Iaw (7a)  
are valid simultaneously. The above-mentioned equation for q43(y, s) implies that the 
velocity defect law (7 a )  must have the form 

[Urn - U(Y)l/W)t = - q a s / u : )  (Y/SP + I(aS/u2,) (16) 

within the overlap layer. As in the case of (9)’ the function I(aS/u$) can be roughly 
estimated with the aid of the assumption that the region of applicability of (16) 
extends to the upper edge of the boundary layer. This assumption implies that 
I(aS/u$) z X-(aS/u$). Therefore we plot equation (13) for .X in figure 5 together 
with the experimental values of I(aSlu2,). The values of the term I(aS/u2,) of (16) are 
determined here by the method which has been used above to determine the experi- 
mental values of the term XI of (11) .  We see that all the values of I(aS/u$) are close 
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FIGURE 5. The dependence of I on aS/u;. 

to a single curve but that they deviate significantly from the values of S(aS/u$). 
This is not at  all surprising, since the estimate I(aS/u$) x S(aS/u2,) is not precise. 

The equation I(mS/u2,) = 10[1.7u2,/aS+ 0.414, represented by a dashed curve in 
figure 5, fits the data better than does (13); however, the data are described even more 
precisely by the equation 

(17) I(aS/ug) = 10[3u$/(018)~ + 0.1614. 

This equakion will be used below. Equation (17) leads to the asymptotic laws 

I z 13u,/(aS)t, I x 6-3 = constant 

at small and large values of aS/u2, respectively. Both these asymptotic laws are also 
plotted in figure 5 and will be discussed later. 

Let us now consider the velocity defect laws (7) and (7a ) .  The law ( 7 )  differs from 
the usual velocity defect law for boundary layers (see, for example, Monin & Yaglom 
1971; Hinze 1975; Townsend 1976) by the replacement of the velocity scale u* by the 
velocity scale (016):. The uselessness of the velocity scale u* for the description of the 
outer part of a boundary layer a t  large values of &/6, = aS/u$ (i.e. at  large a or small 
u*) is emphasized in some previous papers too. For example, Mellor & Gibson (1966) 
suggested the replacement of the velocity scale u* by (aS*)h, where 13" is the displace- 
ment thickness, when the parameter /3 = aS*/u2, was large. (At moderate values of p, 
Mellor & Gibson used the usual velocity scale u*. Nevertheless they modified the usual 
velocity defect law by replacing the length scale 6 by a related but different length 
scale a t  each value ofp.) For the special case of negligible wall stress Chawla & Tennekes 
(1973) suggested the law [U,- U ( y ) ] / U ,  = @(y/S), i.e. they used the free-stream 
velocity U,, as the velocity scale in the velocity defect law. Schofield & Perry (1972) 
and Perry & Schofield (1973) also modified the usual form of the velocity defect law 
for a wide collection of boundary layers in adverse pressure gradients. These authors 
introduced special velocity and length scales which were determined by the mean 
velocity variations within the outer part of the boundary layer and were independent 
of the value of u*. However, the simple velocity defect equation (7) seems to be most 
natural from the point of view of the general similarity and dimensional arguments 
of the present paper. 

We have already seen that the velocity gradient is usually dependent on the values 
of the parameter S/S, = aS/u2, within the generalized half-power layer. Therefore it 
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FIQURE 6. Dimensionless velocity defect as a function of y/S for all the velocity profiles froni 
Coles & Hirst (1969) corresponding to as/u; > 50. The solid line represents equation (18). 

is natural to suppose that the same parameter influences the velocity distribution 
above this layer too. If this is true, then the velocity defect law cannot have the 
simple form (7) ,  and must evidently have the generalized form (7a) .  Within the 
generalized half-power layer the form of 03(q ,  aS/u2,) is given by (16), i.e. it depends 
on two functions -X(aG/u;) and I(a6lu2,) of one variable. However, there is no reason 
to expect that this equation is valid at large values of 7 = y / b  including the neigh- 
bourhood of the point ? = 1 (i.e. at  y M 6). Hence we must consider 03(r, aSlu2,) in 
this region as an unknown function of two variables. Of course, the experimental 
determination of a function of two variables is a much more difficult and unreliable 
task than the experimental determination of a function of one variable. Therefore it 
is reasonable to consider at first only the data at large enough values of aSlu2,. It is 
natural to expect that the velocity defect function Q 3 ( ~ ,  aSlu2,) will be independent 
of a&/u2, if aSlu2, > 50 (this expectation is based on the data in figure 3, which show 
that -X is practically constant for ab/u2, > 50). On this basis we plot in figure 6 the 
dependence of [U, - U(y) ] / (a6 )4  on 7 = y/6 for all the velocity-profile data from Coles 
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& Hirst (1969) which correspond to  a > 0, aS/ug > 50 and large values of 7.  The scatter 
of the experimental points in figure 6 is rather large, but we must keep in mind that 
these points represent the measured values of the ratio of two relatively small quanti- 
ties (in comparison with the values of U(y) and Urn), that  S is rather difficult to measure 
precisely, and that flows with large values of aSlu2, are usually approaching separation. 
The last circumstance implies that U,, a and S are here rapidly changing with x, which 
makes accurate measurements rather difficult. Therefore it is impossible to  decide a t  
present whether the scatter in the points in figure 6 is due only to  experimental errors 
or whether it reflects also the violation of moving equilibrium (i.e. the influence of the 
upstream history) or, perhaps, the influence of the variations in aS/ug. I n  any case 
the absolute values of U ( y )  will be represented with a good accuracy by any smooth 
curve drawn through the central part of the set of points in figure 6, since U(y) is 
considerably greater than U , -  U ( y )  at large values of 7. The spread of the points 
permits one to select several reasonable forms for the curve, i.e. to select several 
different equations for the function @,(q) = @,(y,co) which fit the data with almost 
the same accuracy. I n  particular, the data agree well with the assumption that @,(7) 
can be described by Hama’s equation 

@3(7) = 94(1  - 7 ) z ,  (18) 

which was proposed for the velocity defect function of a boundary layer with constant 
pressure (see, for example, Monin & Yaglom 1971, p. 315; Hinze 1975, p. 631). Let us 
recall that Clauser (1  956) emphasized the similarity of the velocity defect functions in 
constant-pressure boundary layers and in all variable-pressure equilibrium boundary 
layers. The wake law of Coles is also based on the observation that the dependence 
of the normalized velocity defect on y/S = 7 is determined by the universal wake 
function w(7)  to within a constant factor II which may depend on the velocity gradient 
(see, for example, Coles & Hirst 1969, pp. 1-45; Allan & Sharma 1974). The form of 
the wake function does not differ too much from Hama’s form of velocity defect 
function (cf. figure 1 in Huang 1974). The similarity of the velocity defect function 
for all the adverse-pressure-gradient boundary layers plays an important part in the 
arguments of Schofield & Perry (1972) and Perry & Schofield (1973). This similarity 
is reflected in our theory by the fact that the dependence of 03(7, aSlu2,) on 7 is similar 
to that of Hama’s function for aSIu2, > 50 and, as i t  will be shown below, for all the 
other values of aslug too. However, the coincidence of the numerical factor 9.6 on 
the right-hand side of (18) with that in the corresponding equation of Hama must, of 
course, be considered as fortuitous. 

Now we have determined the asymptotic form of O3(7,aSIu~)  a t  aS/u2,-+co and 
we also know the form of this function a t  aSlu2, = 0 (i.e. for a turbulent boundary 
layer with a constant pressure). Therefore we can try to choose an approximate form 
of 03(7, aS/ui) for all values of aSlu2, by means of a simple interpolation between 
two asymptotes. It is convenient to begin by rewriting Hama’s velocity defect law 
for a constant-pressure boundary layer in the following form : 

03(7, aS/ui) = 9*6u*( as)-* ( 1  - 7)2 for aSlu2, = 0. (19) 

The simplest interpolation equation joining (18) and (19) has the form 

@,(7, aS/ug) = 9.6{1+ [~,(aS)-*l~}‘’~ (1  - v ) ~ .  (20) 



324 B. A .  Kader and A .  M .  Yaglom 

We may select any positive value of the exponent m in (20), and the transition to the 
asymptotic forms (18) and (19), when aS/u2,+00 or aS/u2,-+0, will be sharper the 
higher the value of m (cf. the derivation of equation (13) for Z). Comparison of 
(20) with experimental data shows that satisfactory results can be achieved if the 
value m= 2 is selected, i.e. the situation is fully analogous to that related to (13). 
Hence we may assume that 

[Urn - U(y)] / (aS)*  = @ 3 ( 7 , 0 1 1 3 / ~ ; )  = 9.6( 1 + t&/aI3)$ (1 - v ) ~ .  (21) 

This equation for Q3(7, will be used below in this paper. (For simplicity, it is 
suggested in the note by Kader & Yaglom (1977b) that m = 1 in (20). Such a value 
of m yields slightly worse, but also acceptable, agreement with the data.) 

Let us also note that (21) can be used to justify the approximate equation (17) 
for I(aS/ui) .  It is clear that (21) will be applicable only a t  large enough (i.e. close 
enough to 1 )  values of 7 = y/S. When 7 decreases the form of Q3(7, aS/ui) will change 
and be transformed into (16) after some value 7 = vl. In the first approximation it is 
reasonable to suggest that the function Q3(7, aS/u2,) can be described by (21) till a 
value 7 = rl determined as the value of 7 at the intersection of the curves 

Q3(7) = 9.6( 1 + u$/aS)* (1  - q ) 2  and Q3(7) = - Z(a8/u i )  74 + I(aS/ui), 

while Q3(7, aS/u$) can be described by (16) at 7 < yl. In  other words it is reason- 
able to suggest that equations (21) and (16) for the velocity defect match each other 
directly at 7 = vl. (This approximation has, apparently, a rather high accuracy.) If 
this is so, then evidently 

I(aS/u$) = 9*6( 1 + u",/.S)* (1 - 71)2 + Z ( ~ S / U ~ )  7!, 

where rll is the ordinate of the intersection point of the graphs of functions (21) and 
(16). Unfortunately, we do not know the exact value of ql. However, it appears that 
the function 9.6( 1 -t u",aS)B ( 1  - q 1 ) 2  + Z(aS/u2,) 7f = y(q1, aS/u2,) does not change 
very much over a rather wide range of ql. In fact, a t  first let us consider the case 
aS/u$ 9 1,  when Z(aS/ui)  % 4.5 and $(v1, aS/u2,) z 9.6( 1 - T , J ~ ) ~  + 4-57!. The data in 
figure 6 show that the values of Q3(y, 00) begin to deviate significantly from 9.6( 1 - 7)2 
only when 7 x 0.3-0.5. The value of 9.6 ( 1  - r1)2 + 4.57f varies from 7.2 to 5.6 when 
yl varies from 0.3 to 0.5. Therefore we shall not incur a large error if we suggest that 
I(aS/u;) = 9*6(l  -71)2+4*57f a t  yl = 0.4, when aS/ui 9 1.  Such an estimate shows 
that I(co) z 6.3. Figure 6 clearly gives no possibility of estimating the value of ql 
in the second extreme case when aS/ui g 1.7 However, it appears that the function 
$(rl, 0) % 9-6u,(a6)-*( 1 - r 1 ) 2  + (2007,)t u,(aS)-t changes very slowly with rl: the 
value of this function varies only from 12*4u,/(aS)t to 14u,/(aS)t when vl varies from 
0.2 to 1.  Therefore we can assume that I(aSIu2,) % 13u,/(aS)* for aS/u2, < 1 without 
taking the risk of making a large error. Figure 5 shows that both the asymptotic 
expressions for I(aB/u2,) derived above agree well with the experiments. We can now 

t We can, however, use the data on the velocity defect in a constant-pressure turbulent 
boundary layer for this purpose. Such data, shown, for example, in figure 7- 11 of Hinze (1976) 
and in figure 1 of Huang (1974), give the impression that the function Q8(v, 0) begins to deviate 
from the right-hand side of (19) at 7 x 0.3-0.2. 
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follow the method of obtaining the interpolation equations (13) and (21) for X(aS/u2,) 
and @,(q, aS/ui). This method leads to the interpolation equation 

I(aS/ui) z 10(1-7u$/a6+ 0-4)a 

for I (a6lui) .  However, figure 5 shows that this equation implies too smooth a tran- 
sition from one asymptotic expression for 1(a6/u2,) to the other. To make the tran- 
sition sharper it is necessary to increase the exponent m in the interpolation equation 
analogous to (20). Figure 5 shows that the value m = 4, which corresponds to (17)’ 
gives good agreement with the data. 

Let us now combine all the equations obtained to derive a description of the whole 
velocity profile U (y ) for adverse-pressure-gradient boundary layers. We shall consider 
the following three-layer model of the boundary layer. Very close to the wall there is a 
wall layer where the velocity profile is described by (10). (According to this equation 
the wall layer is decomposed into viscous and buffer sublayers for y+ < 27.5 and a 
logarithmic layer for y+ > 27.5.) The ‘generalized half-power layer’ is adjacent to the 
wall layer and the velocity profile within the new layer is described by the equivalent 
equations (11)  and (16). Finally, far from the wall there is an outer turbulent layer 
where the velocity profile satisfies the generalized velocity defect law of the form (21). 
In  other words we shall assume that the velocity profile a t  a given cross-section of a 
boundary layer is given by the equations: 

14.5tanh(yu,/14.5~) for 0 < y < 27-5v/u,, (22a) 

2-44ln(yu,/u)+5 for 27*5v/u, < y < y2, (22b) 

The coefficients 3? and .Xl in these equations are determined by (13) and (15), yz is 
the ordinate of the intersection point of the graphs of the wall law (22a, b) and ‘half- 
power law’ (22c), and y1 is the ordinate of the intersection point of the graphs of the 
‘half-power law’ (22c) and ‘velocity defect law’ (224.  

Equations (22) have been used for the computation of all the measured velocity 
profiles for adverse-pressure-gradient boundary layers from the book by Coles & 
Hirst (1969) and from the later work by Samuel & Joubert (1974). The values of 
U,, u*, 6 and a used have been taken from the tables in the book by Coles & Hirst 
and from similar tabulated data of Samuel & Joubert kindly sent to us by Professor 
A. E. Perry. The ordinates y2 and y1 of the intersection points of the half-power law 
with the wall law and with the velocity defect law have been determined with the 
aid of a computer. The same computer has also given us the whole profile U(y). If 
the half-power law (22c) does not intersect the velocity defect law ( 2 2 4 ,  then the 
computer determines the ordinate of the intersection point of the wall law and the 
velocity defect law and gives the velocity profile U(y) which is obtained with these 
two laws directly matching each other. We shall see below that such cases produce 
the worst agreement of the computed velocity profile with the measured one. 

We have analysed about 250 different velocity profiles taken from 25 experiments. 
The results of the calculations appeared to be very satisfactory. As a typical example 
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FIGURE 7. Comparison of the velocity profiles measured by Newman (experiment 3500; points) 
with the proposed theoretical equations (solid lines). The vertical straight lines in this figure 
and in subsequent similar figures indicate the origins of the velocity values for different profiles. 
The velocity scale is given in the right upper corner. 
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FIQURE 8. Comparison of the velocity profiles measured by Ludwieg & Tillmann (experiment 
1100) with the proposed theoretical equations. Notation aa in figure 7. 

we plot in figure 7 the above-mentioned velocity-profile data of Newman (cf. figure 1 
on p. 315) together with the corresponding results of computation with the aid of 
(22). We see that the deviations of the computations from the measurements do not 
exceed a few per cent. In figure 8 a similar graph is shown which is related to the 
Ludwieg & Tillmann (1949) measurements of a boundary layer in a diverging channel 
(experiment 1100 from Coles & Hirst 1969). The agreement of the computations with 
the experiment is even better in figure 8 than in figure 7 with the single exception of 
profile 3. In the case of t'his profile the half-power law (22c )  does not intersect the 
velocity defect law ( 2 2 4  and therefore the computed profile 3 is composed of the wall 
law ( 2 2 b )  and the velocity defect law ( 2 2 4 ,  which join a t  the point M where a sharp 
discontinuity in the f i s t  derivative appears. At the same time the measured profile 3 
is very smooth and includes a considerable portion described by the half-power law, 
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FIGURE 9. Comparison of the velocity profiles measured by Samuel & Joubert (1974) with the 
proposed theoretical equations. Notation as in figrire 7. 

8ol 
I 

20 ;:i 0 0. I 

I I  
3 4  

I 
5 

I 
6 

I 
X 

FIGURE 10. Comparison of the velocity profiles measured by Fraser (experiment 6100) 
with the proposed theoretical equations. Notation as in figure 7. 

but with coefficients different from the theoretical recommendations (13) and (15). 
Nevertheless the relative error in the computed profile is rather small for profile 3 
too: it does not exceed 8 %. One more typical example is given in figure 9, where careful 
experimental data of Samuel & Joubert (1974) are plotted. Finally we want also to 
show the result' of the computation for the experiment yielding the worst agreement 
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with the data. Thus we have plotted in figure 10 the data of H. R. Fraser (experiment 
5100 from Coles & Hirst 1969) related to measurements in a round diffuser for a range 
of high values of the dimensionless parameter aS/ui (extending to aS/ui = 1440). 
This figure show8 that among the eleven measured profiles there are three profiles such 
that the corresponding half-power law (22c) does not intersect the velocity defect law 
(22d). This leads to the considerable deviation of the computed profiles 3, 4 and, 
especially, 12 from the measured ones. However, for these profiles too, the relative 
error is not very great (and is very small for all the other profiles). 

Summing up, we may say that for a great variety of adverse-pressure-gradient 
boundary layers equations (22) describe the measured profiles quite satisfactorily. 
Significant deviations appear only in a few cases when the half-power law with the 
coefficients (13) and (15) does not intersect the velocity defect law (22d) while the 
measured velocity profile includes a considerable interval of y values described by the 
half-power law but with the coefficients X and XI different from the proposed values. 
(The deviations of the experimental values of X and XI from the theoretical equations 
are clearly seen in figures 3 and 4.) The observed discrepancies may be due to the 
inaccuracy of (13) and (15); moreover it is also possible that the only reason for the 
discrepancies is the appearance of considerable errors in the measured values u* and 
6. Let us especially note that Fraser’s data in figure 10 refer to the flow in very high 
pressure gradients, where the usual method of the determination of u* with the aid 
of the logarithmic approximation to the wall velocity profile is very inaccurate. 
Moreover Fraser’s experiment is related to an axially symmetric, and not plane, flow, 
while the considerations of the present paper refer mainly to plane flows. Hence we 
may conclude that there are no reasons at present to modify (13), (15) and (22). We 
also emphasize that the satisfactory agreement of (22) with the data confirms the 
assumption of moving equilibrium of most of the boundary layers analysed in Coles 
& Hirst (1969) and of the boundary layer studied by Samuel & Joubert (1974). 
Additional remarks on this topic will be given in the part of the next section related to 
figure 11. 

4. The determination of the skin-friction coefficient and the boundary-layer 
thickness 

A family of velocity profiles (22) has been constructed in the previous section and 
it has been shown that this family agrees well with the data for a wide variety of the 
boundary layers in adverse pressure gradients. The derived velocity profiles depend 
on the molecular viscosity v and on the parameters Urn, a, 6 and u* a t  the particular 
cross-section x = constant. The parameters Urn and a = - U,dU,/dx are determined 
by the free-stream velocity distribution. This distribution is easily measured and 
therefore it is usually justified to assume that Urn and a are known. However, the 
determination of the friction velocity u* (or, equivalently, the wall stress r, = pui  
or skin-friction coefficient cf = ~ ( u , / U , ) ~ )  and the boundary-layer thickness Sis a much 
more difficult task. The present section will be entirely devoted to this determination. 

Let us begin with the problem of the determination of u* (or cr). Much attention 
is usually devoted to this problem in the theory of the turbulent boundary layer. It 
is usually assumed that the following quantities are known: v, U,, some typical 
boundary-layer thickness A (e.g. the usual thickness 6,  the displacement thickness S* 
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or the momentum thickness 8) and some integral characteristic of the velocity dis- 
tribution in the outer region of the boundary layer (e.g. the conventional shape factor 
H = 6*/8 or some modification of this). The expression for u* in terms of v, U,, A 
and the velocity distribution characteristic (or, in dimensionless form, the expression 
for the coefficient cf in term of the Reynolds number Re = U, A / v  and some dimension- 
less shape factor) is called usually a skin-friction law for the boundary layer. Many 
empirical, semi-empirical or 25 %-empirical forms of the skin-friction law have been 
proposed by different authors; these laws have different accuracy and different 
domains of validity (see, for example, Ludwieg & Tillmann 1949; Nash 1966; Mellor 
& Gibson 1966; Coles & Hirst 1969, pp. 11-14; Kutateladze & Leont’ev 1972). How- 
ever, none of these skin-friction laws is valid for all the boundary layers analysed in 
the present paper. Moreover a specid form of the skin-friction law is needed in the 
framework of our theory, namely the form expressing u* (or c,) in terms of v, Urn, 6 
and U .  Now we shall derive a new form of the skin-friction law applicable to all moving- 
equilibrium turbulent boundary layers in adverse pressure gradients. 

The theoretical derivation of the skin-friction law is usually based on the use of 
a particular-family of velocity profiles. The most traditional derivation uses also the 
assumption of the existence of an overlap interval in which the wall law and the 
velocity defect law are valid simultaneously and can be added together (see, for 
example, the classical paper by Millikan 1939; or the work by Mellor & Gibson 1966, 
5 3); there are also derivations in which the velocity-profile equation is used differently 
(e.g. Coles in Coles & Hirst 1969, pp. 11-14). It is important that all the derivations 
suggest that the wall law has the simplest logarithmic form (3). This leads to the term 
of the form A In Re in the equation for Um/u, = (2/cf)* which appears in almost all the 
published boundary-layer skin-friction laws (in particular in the laws of Rotta, Coles, 
Thompson, Nash and Mellor & Gibson considered in the sources cited above). How- 
ever, it has already been stressed in the present paper that the logarithmic layer of a 
flow can be completely destroyed by a pressure gradient when this gradient is strong 
enough (such a situation arises in all the cases which correspond to the experimental 
points in figure 4 which deviate significantly from the dashed line). It is clear that 
usual forms ‘of skin-friction law cannot be applied to boundary layers without a 
logarithmic layer. 

We may use the existence of the generalized half-power layer in all the boundary 
layers analysed. We have seen that this layer coincides with the overlap layer in 
which the generalized gradient law (4a)  [of the special form (1  l)] and the generalized 
velocity defect law (7a)  [of the form (is)] are valid. According to the Millikan method 
it is sufficient to add (11) and (16) to derive the skin-friction law. Such a procedure 
leads to the equation 

which can be written in the form 

by virtue of (15) and (17). The skin-friction law (24) expresses the quantity 

urn/.* = (2/C,)* 
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FIGURE 11. The dependence of the parameter F on uS/u2, for adverse-pressure-gradient boundary 
layers. The numbers in parentheses below some of the points indicate the values of U,/(U&) b .  

in terms of the dimensionless parameters u, S / v  and aS/ui. This law permits one to 
compute the skin-friction coefficient c, when the values of the Reynolds number 
Re = U,6/v and of the modified shape factor a6/Vm are known. (Some details of the 
corresponding method of computation will be given below.) A comparison of the skin- 
friction law (24) with the data is shown in figure 11, where the values of the quantity 
F = Urn/., - 2.44 In I? + 15/I't + 6 / r  are plotted along the y axis and the values of 
aSlu2, are plotted along the x axis. The points in figure 11 correspond to the experi- 
mental data for all the velocity profiles used in figures 3 and 4 and the solid line is 
described by the equation F = 10[3 + 0.16(aS)2/u$]~ implied by (24). We see that the 
points cluster along the theoretical curve with moderate scatter. Moreover most of 
the points which deviate significantly from the curve correspond to low values of 
U,/(aS)t (these values are given in parentheses below some of such points). We 
mention that it has already been explained in $ 2  that the condition for moving 
equilibrium may not be satisfied accurately enough at low values of U,/(crS)*. There- 
fore the presence of the significant deviations from the theoretical curve in figure 11 
may indicate the low accuracy of the moving-equilibrium condition when applied to 
some experiments from the book by Coles & Hirst (1969). 

It is natural that the data analysed agree with the skin-friction law (24) satis- 
factorily. In  fact, this law is obtained by adding together (11) and (16), and the 
coefficients of these equations are determined by the treatment of the same data. Let 
us also stress that the skin-friction law (24) has satisfactory accuracy even in the case 
a = 0 (i.e. for a constant-pressure boundary layer). If a+O then I?+3u,6/25v 1. 
Therefore (24) turns into the equation 

Um/u, = 2-44 In (u, S/v) + 7.8 (25) 

as a -+ 0. Equation (25) represents the well-known skin-friction law for a boundary 
layer in the absence of a longitudinal pressure gradient (see, for example, equation 
(5.58) in Monin & Yaglom 1971, which differs from (25) only by an insignificant small 
change in the values of the numerical coefficients). We see that (23) is applicable to 
all non-negative values of a, beginning from a = 0. This is, of course, due to the fact 
that a narrow region of approximate validity of the generalized half-power law may 
be found at any non-negative values of a. 
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FIQURE 12. The ratio U,/(aS)t &B a function of aS/u$ for 
the measured velocity profiles with uS/u$ > 4. 

The situation is more complicated in the extreme case of very high values of aS/ug 
(i.e. large a and small u*). Formally r + 0 and XI + - 00 as a -+a and u* -+ 0. How- 
ever, both a and u* are dimensional quantities and therefore such a passage to the 
limit is, in fact, unjustified. It is more reasonable to assume that aS/ug = 6/6p+al 
but that the value of r = SP/S,, = u$/av is fixed; then r --f 1.2r and XJu,  is a definite 
function of r .  The form of this function implied by (15) is, of course, rather unreliable 
since the equation itself is a crude approximation only. But the exact form of the 
dependence of XJu* or r is apparently rather unimportant, since the lower edge of 
the half-power layer is very near to the wall (in comparison with the distance 6) at 
large values of aS/u$. Hence the 'slip velocity' X, (representing the velocity of slip 
at the wall, if the half-power law is extrapolated to the wall) proves to be a very small 
part of U, = U(6)  in the cases considered. (A very typical example of this is given by 
Stratford's 19593 data.) The arguments above show that the first term on the right- 
hand side of (23) is usually small in comparison with the left-hand side, if a6/ui + 1, 
and hence the first term on the right-hand side may be neglected in the first approxima- 
tion. Taking into account that I(a6lu2,) M 6-3 when a8/u2, 9 1, we obtain a very simple 
approximate form of the skin-friction law (23) for strong adverse pressure gradients: 

U,/(a6)* x constant x 6.3 for a6/ug > 1.  (26) 

To verify (26) we plot in figure 12 the values of U,/(aS)t for all the velocity profiles 
analysed which are such that a&/u: > 4. We see that (26) agrees fairly satisfactorily 
(namely, with an accuracy of about 15 yo) with the data for all the cases for which 
a6/u2, 2 50. Hence the validity of (26) is confirmed by experiments. The spread of 
points in the region aSlu2, 2 50 of figure 12 may be due to the experimental errors, but 
it is also possible that it reflects the influence of the upstream history of the flow (i.e. 
the violation of moving equilibrium) or of the variations in r = ui/av on U,/(a6))  
[cf. the discussion of the scatter in figure 6, which represents the defect law used in 
the derivation of (26)l. Let us remember in this connexion that U,/(a6)* determines 
the order of magnitude of the ratio of the time scale of the longitudinal variation of 
the free-stream velocity to the time scale of the turbulence in the outer boundary 
layer (see the closing part of 0 2). Since 6.3 is not a very large number, it is possible 
that the moving-equilibrium condition is not satisfied very accurately within the outer 
region of boundary layers with high values of aS/u: and that this circumstance 
contributes to the inaccuracy of (26). 
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Relation (26) may be used for the approximate estimation of the boundary-layer 
thickness at large values of aS/uB,, but the accuracy of such an estimate will be rather 
low since the accuracy of (26) is also not high and both sides of (26) must be squared 
to determine the value of 8. Another approximate method of estimating the boundary- 
layer thickness which gives more satisfactory results will be described later in the 
present paper. 

Let us note that Uw decreases along the x axis in an adverse-pressure-gradient 
boundary layer while 8 increases. Therefore (26) makes us think that in the case of an 
unseparated turbulent boundary-layer flow the inequality a6lu2, > 50 can, apparently, 
be valid over a considerable length in the x direction only if da/dx is negative there 
(and rather large in absolute value). Let us also note that (26) clarifies some results 
of Chawla & Tennekes (1973). These authors suggested writing the velocity defect 
law in the form [U, - U(y) ] /U ,  = @(y/6) when u* is negligibly small, i.e. a&/u2, is 
very large. The use of the velocity scale U, may seem strange since the velocity defect 
law is usually considered as a law governing the relative motions within the outer 
part of the boundary layer, i.e. the law may include the differences U , -  U(y), but 
not the value of U, itself. However (26) shows that U, is approximately proportional 
to (aS)i for the flows analysed by Chawla & Tennekes. Therefore their form of the 
velocity defect law is in practice equivalent to the form (7) recommended in the 
present paper. 

Let us now consider the problem of the determination of the boundary-layer thick- 
ness 6 at different values of x. Several different equations describing the dependence 
of the typical boundary-layer thickness A on x can be found in the literature (see, 
for example, Bam-Zelikovich 1954; Rotta 1962; or Hudimoto 1965). However most 
of these equations refer to a thickness A different from S (i.e. to the displacement 
thickness &* or the momentum thickness 8) and have an insufficiently wide domain 
of applicability. A very simple and sufficiently accurate approximate method of 
determination of the function &(x) was proposed for the case a = 0 by Landau & 
Lifshitz (1963, $44;  see also Monin & Yaglom 1971, $5.6) .  Their derivation is based 
on the assumption that the rate v of increase of the boundary-layer thickness is 
proportional to the typical value of the vertical velocity fluctuation a t  y = 6. This 
assumption may be justified by dimensional reasoning. In fact, both the rate vand 
the scale v' of the vertical velocity fluctuations at y = 8 are evidently determined by 
turbulence conditions within the outer region of the boundary layer. Hence, if the 
scale v' is determined by dimensional analysis to within a numerical factor, then the 
rate v must be proportional to v'. If a = 0, then the outer-region turbulence depends 
on the two dimensional parameters u* and S; therefore both v and v' must be pro- 
portional to u*. In  other words the equation d&/& = b,u, must be valid in a co- 
ordinate system moving with the free-stream velocity U,, where b,  is a numerical 
constant of the order of unity. (The constant b, must, of course, be the same for smooth- 
and rough-wall flows and also for flows of pure liquids and turbulent flows of solutions 
of drag-reducing polymers.) This means that 

Let us also note that U, is independent of x when a = 0 and u* varies only very 
slowly with x (approximately as 2-14; cf. Monin & Yaglom 1971, equation 5.66). 
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FIGURE 13. The dependence of the boundary-layer thickness of a constant-pressure turbulent 
boundary layer on the streamwise co-ordinate 2. (a) Wieghardt’s data (experiment 1400). (b )  Bell’s 
data (experiment 3000). The dwhed lines correspond to (28) with 6 = 0.34. 
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Therefore the second of equations (27) may be replaced by the simpler approximate 
equation 

where the numerical coefficient b differs from b, only slightly (and therefore these 
two coefficients must be considered as equal when we are not demanding high accuracy). 
To determine the value of the coefficient b we compare (28) with the data of Wieghardt 
and Bell for constant-pressure boundary layers from the book by Coles & Hirst 
(see figures 13a,  b) .  We see that both the experiments confirm the validity of (28) 
and imply the same value b = 0.34 of the coefficient. 

The general case of a boundary layer with a pressure gradient (with an arbitrary 
value of a) was considered by Hudimuto (1965). This author also assumed that 
d6/dx is proportional to v'/Um where v' is the scale of vertical velocity fluctuations at  
y = 6. However he determined v' with the aid of a special semi-empirical hypothesis 
and an assumption concerning the form of the velocity profile U(y). In  this paper we 
shall use the assumption that d6 ldx  oc d / U ,  but we shall determine v' with the aid 
of dimensional reasoning. Let us begin with the limiting case a6/ui 9 1. In  this case 
the turbulence conditions in the outer part of the boundary layer are influenced by 
the parameters a and 6. Hence both the velocity scales v' and v must be proportional 
to (a8)4, i.e. 

dS /dx  = a,(aS)*/U,, 

where a, is another numerical coefficient of the order of unity.t Let us now remember 
that the skin-friction law (24) implies the approximate equation (26 )  when aS/u2, % 1 
and that the data from Coles & Hirst (1969) also confirm the approximate validity 
of this equation. (It is easy to see that (26 )  can be compatible with (29) only if d a l d x  
is negative and not too small in absolute value. This fact is however of no importance 
here.) Therefore (29) may also be rewritten in the following form: 

d6 ldx  NN el = constant, c1 z aJ6-3 ,  when a6luz $ 1. (30 )  

This equation shows that the boundary-layer thickness must increase approximately 
linearly with x (and that the rate of increase must be almost constant) when aS/u2, % 1 
(apparently when aS/uZ, > 50).  The verification of the last result is considerably 
complicated by the fact that the condition a6/u: > 50 is usually valid for a small 
portion of the x axis only, after which separation appears. Moreover the moving- 
equilibrium condition is not usually satisfied accurately enough for boundary layers 
close to the separation. Nevertheless it is possible to compare the prediction (30 )  with 
the data of ten experiments from Coles & Hirst (1969) which include velocity-profile 
measurements at several adjusting stations satisfying the condition a6/u2, > 50. In 

t We note that for the case of a turbulent boundary layer in a strong adverse pressure 
gradient the equation d6/dx x aa&/U: was suggested by Bsm-Zelikovich (1954). By virtue of' 
(26) this equation differs from (29) only slightly. However Bam-Zelikovich assumed that any 
typical boundary-layer thickness may be used as  6 and compared his equation with data for the 
case when 8 was a displacement thickness or a momentum thickness. On the basis of the entrain- 
ment method of boundary-layer theory (see, for example, Head in Kline etal.  1969, pp. 188-194) 
and the relative smallness of 6* compared with 8, one may try replacing the right-hand side 
of (29) by U&ld(U,  6 ) ldx .  (Such areplacement changes nothing when a = 0 and U, = constant, 
but it does lead to a change when a * 0.) However it appears that such a change does not give 
better agreement with the data. 
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FIGURE 14. The dependence of the increase in the boundary-layer thickness on the increase in the 
streamwise co-ordinate for strongly decelerated turbulent boundary layers with a8fu: > 50. 

figure 14 we plot S-So, where 6, = S(xo), as a function of x-xo for all these measure- 
ments related to uriseparated flows; here xo is the x co-ordinate of the first of the 
indicated station points. There is a considerable spread of points in figure 14 but all 
the points nevertheless clearly cluster around the line S-So = O.l(x-x,). We may 
therefore consider figure 14 as a confirmation of the theoretical prediction (30) and 
deduce from it that c1 x 0.1, i.e. a, x 0.63. 

The dimensional analysis does not permit one to determine uniquely the rate of 
increase of S(x) with x a t  intermediate (not too small and not too grea,t) values of 
aS/ui. In this case the dimensional analysis implies only that v = u* +(aS/ui), i.e. 

where +(s) is an unknown function of one variable. By virtue of (27) and (29) this 
function must have the following asymptotics: $(s) -+ b ,  x 0.34 when s+ 0 and 
@(s) x a, s), a, x 0.63, when s $ 1.  This makes it possible t,o try to choose the approxi- 
mate form of $(s) by means of interpolation between two asymptotics. However the 
interpolation equations of the form used above to find the variation of the functions 
X(aS/ui) and Q 3 ( ~ ,  aS/ui) with the argument aS/u$ do not give good agreement 
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FIaURE 15. Comparison of the measured dependence of the boundary-layer thickness on x (points) 
with the computation according to (33) ( d i d  lines). The dashed lines indicate the corresponding 
dependence of a on x. (a) Ludwieg &, Tillmann’s data (experiment 1100). ( b )  Perry’s data (experi- 
ment 2900). 
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with the data when applied to  +(s).-f Better agreement may be achieved by use of a 
combined (‘ two-layer ’) interpolation equation. We shall thus use the following 
combined equation for @(s): 

0.34+0.0824s when s < 50, 
when s > 50. *(’) = { 0-63d 

It is easy to see that the function (32) is continuous. It leads to the differential equation 

(33) 
”={ (0.34 + O.O824uS/u$) u,/Uw when aS/u$ < 50, 
dx 0.63(0lS)~/U, when aS/uz > 50 

for the function 6(x). The results of numerical integration of this equation with the 
values of b(0) and u*(x) corresponding to experiments 1100 and 2900 from the book 
by Coles & Hirst (1969) are compared in figure 15 with the results of the direct measure- 
ments of 6(x). We see that the calculated and measured data for 6(x) are very close 
to each other. All the other experiments analysed in the present paper provide approxi- 
mately the same agreement of the theory with the data. 

Let us now nofe that the skin-friction law (24) and boundary-layer-thickness 
equation (33) permit one to calculate the velocity profiles (22) in cases when only the 
free-stream velocity distribution Uw(x) [and thus a(x)] and the boundary-layer thick- 
ness 6(xo) at the first measurement station are known from experiment. I n  fact the 
value of u*(xo) can be determined from the values of Um(xo), u(xo) and 6(xo)with the aid 
of (24).$ Then we may determine the value of 6 ( q )  at the next point x1 = xo+Ax by 
means of (33).  Now we know the values of U,, u and 6 a t  x = x1 and therefore we may 
determine u*(xl) with the aid of (24) etc.11 When all the values Urn(%), a (x) ,  6(x) and 
u*(x) are known it is easy to compute the velocity profile U ( y )  of (22) for every value 
of x. We have done such a complete profile computation for all the profiles mentioned 
at the end of $ 3 .  (A more elementary computation of the velocity profile (22) has 
been described in $3.  This computation is based on the experimental values of the 
quantities u*(x) and 6(x).) The new computed results appear to be rather close to the 
results of the computation in $ 3 and the agreement of the new results with the data 
is almost as good as that for the old ones. We shall consider here only experiment 
1100 of Ludwieg & Tillmann, which is very typical. The comparison of the measured 
values of 6(x) for this experiment with the new computation of S(x) is shown in figure 
16; this figure differs from figure 15(a) by the fact that the values of u*(x) in the 

t Quite satisfactory agreement can be obtained if some more complicated interpolation 
equation is used, For example, the function +(s) = [5 + (1 + 10/8)#] ,&/lo( 1 + 1018) gives results 
which are very close to those implied by (32), but this equation seems to be simpler than the 
indicated form of +(s). 

1 To determine u* it is convenient at first to express all the terms of (24) as functions of the 
dimensionlesscombinations Re = Urn S / v ,  G = aS/U% and h = u*/Urn = (2/c,) 1. Then wecan pass 
to the computer determination of the minimum squared difference between t,he left-hand and 
right-hand sides of (24) considered as functions of one variable h dependent on parameters Re 
end B. It is reasonable to begin the search for the minimum at the point x = zo, assuming that 
h = A,, where A, is the value of h for a constant-pressure boundary layer a t  the same value 
of Re. It is also convenient to begin the search for the minimum a t  the subsequent points 
z = x, assuming that h = A,-,, where A,-, = h(s,-,) is the value of h corresponding to the latest 
calculation. 

11 The solution of the system of equations (33) and (24) may be performed by a method of 
successive approximation (only a few approximations are in fact needed in practice). 

l- 
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FIUURE f6. The comparison of the dependence of the boundary-layer thickness S on x measured 
by Ludwieg & Tillmann with the computation according to equation (33) where the values of u* 
are determined for every x with the aid of skin-friction law (24). 
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FIQURE 17. The comparison of the velocity profiles measured by Ludwieg & Tillmann with the 
equations (22) where the values of u* and 6 are calculated with the aid of the proposed theoretical 
equations. 

left-hand side of (33) are now determined with the aid of (24). We see that new com- 
puted values of 6(x) differ slightly from the computed values in figure 15(a). The 
new computation of the velocity profiles U(y) for all the measurement stations of 
experiment 1100 is shown in figure 17. We see that the new computed velocity profiles 
agree with the data approximately as well as the results of the computation in figure 
8, where it is supposed that the values of Um(x), a(x) ,  6(x) and u*(x) are all known 
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FIGURE 18. The comparison of the computed values of the skin-friction coefficient c, and of the 
shape factor H (lines) with the corresponding experimental values of Ludwieg & Tillmann (points). 

from the experiment. (We mention that the new profile 3 agrees with the data 
excellently in contrast to profile 3 in figure 8. However the new computed profiles 
9-12 agree less well with the data than the same profiles in figure 8; this is apparently 
due to the underestimation of the 6 values for the corresponding measurement stations 
which is observed in figure 16.) Finally, a comparison of the computed values of the 
skin-friction coefficient cf and of the shape factor H = 6.18 with the corresponding 
experimental values (determined from the measured velocity profiles) is shown in 
figure 18. The agreement of the theory with the data is quite good in this case too. 
Therefore we may conclude that the proposed method of velocity-profile computation 
for adverse-pressure-gradient boundary layers leads to very satisfactory results also 
in the case when only the function U,(z) and the value of 6 at the first measurement 
station are known from experiment. 

The authors are grateful to Professor A. E. Perry, who sent them a copy of the report 
by Schofield & Perry (1972) and the tabulated experimental data of Samuel & Joubert 
(1974). They also thank Professor D. Coles, who kindly provided them with copies of 
both volumes of the Proceedings of the 1968 AFOSR-IFP Stanford Conference. 
Finally they want to thank Professor R. L. Simpson, who sent them the numerical 
data of very careful recent measurements by Simpson, Strickland & Barr (1977)  .These 
data were received when the present paper had been already finished and sent to the 
publishers, therefore they were not used in the text above. However the authors have 
now finished the treatment of the data and are glad to note here that all the measure- 
ments by Simpson et al. related to an adverse-pressure-gradient unseparated boundary 
layer prove to agree excellently with the above equations. 
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